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Minimal surfaces with self-intersections along straight lines. I. Derivation and properties
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Abstract

A special kind of three-periodic minimal surface has
been studied, namely surfaces that are generated from
disc-like-spanned skew polygons and that intersect
themselves exclusively along straight lines. A new
procedure for their derivation is introduced in this
paper. Several properties of each such surface may be
deduced from its generating polygon: the full symmetry
group of the surface, its orientability, the symmetry
group of the oriented surface, the pattern of self-
intersections, the branch points of the surface, the
symmetry and periodicity of the spatial subunits
demarcated by the surface, and the Euler characteristics
both of the surface and of the spatial subunits. The
corresponding procedures are described and illustrated
by examples.

1. Introduction

In the past, mainly those three-periodic minimal
surfaces that are free of self-intersections, i.e. that are
embedded in R3, have been studied. A considerable
number of such surfaces have been derived and
described in some detail (cf. e.g. CvijovicÂ & Klinowski,
1992a,b,c, 1993; Fischer & Koch, 1987, 1989a,b,c, 1990,
1992; Fogden, 1993, 1994; Fogden & Hyde, 1992a,b;
Hyde, 1989; Hyde & Andersson, 1984; Karcher, 1989;
Karcher & Polthier, 1990, 1996; Koch & Fischer, 1988,
1989a,b, 1990, 1993a,b; Lidin & Hyde, 1987; Mackay,
1985; Neovius, 1883; Schoen, 1970; Schwarz, 1890;
Stessmann, 1934). In contrast, three-periodic minimal
surfaces with self-intersections have attracted little
attention, probably because there exists an in®nite
variety of such surfaces, showing in most cases too many
self-intersections to be of crystallographic interest.
Among these, however, a special set stands out, namely
those three-periodic minimal surfaces that intersect
themselves exclusively along straight lines. Such surfaces
are relatively rare and may be derived using crystal-
lographic methods. Their surprising properties will be
discussed in this paper and those known so far will be
described in succeeding publications.

Each three-periodic minimal surface shows the
symmetry of some space group G and, as a consequence,
all symmetry operations gi 2 G map the surface onto
itself. Among these symmetries, twofold rotations (and

mirror re¯ections) play a special role with respect to
minimal surfaces, as has been proved by Schwarz (1894):
every straight line running within a minimal surface is a
twofold rotation axis of this surface. Three-periodic
minimal surfaces containing straight lines, therefore,
have been given a special name: spanning minimal
surfaces (Fischer & Koch, 1996b).

Each three-periodic minimal surface with symmetry
G can be subdivided into surface patches, i.e. ®nite
congruent parts with the property that the entire in®nite
surface may be generated by continuing a given surface
patch by applying the symmetry operations of G. This
continuation process is especially simple for spanning
minimal surfaces because a surface patch with a
boundary that is formed (partly or as a whole) by
straight lines may be used.

A special kind of spanning minimal surface may be
derived as follows: a skew polygon, all edges of which
are formed by evenfold rotation axes of some space
group, is spanned disc-like by a patch of a minimal
surface. Its existence is guaranteed without individual
proof owing to the general solution of the plateau
problem for spanning frames by minimal surfaces [cf.
textbooks on minimal surfaces, such as those by Nitsche
(1989) and Dierkes et al. (1992)]. The original surface
patch may be continued to an in®nite three-periodic
surface with the aid of the twofold rotations around the
polygon edges and the products of these rotations. The
original polygon is called the generating polygon of the
spanning minimal surface.

A minimal surface derived in this way may either be
free of self-intersections or intersect itself in a more or
less complicated pattern. All intersection-free minimal
surfaces that may be generated with the aid of skew
polygons have been derived previously (Fischer & Koch,
1987; Koch & Fischer, 1988). In the following, self-
intersecting surfaces of such a kind will be considered,
but only those that intersect themselves exclusively
along straight lines (referred to as `minimal surfaces
with straight self-intersections').

2. Derivation

Any skew polygon generating a three-periodic minimal
surface with or without self-intersection can be formed
by the evenfold rotation axes of one of the following
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space groups: P222, C222, F222, I222, P422, P4212,
P4222, P42212, I422, I4122, P622, P62,422, P432, P4232,
F432, F4132, I432, P41,332, I4132.

A number of such polygons have been examined.
First, each of them has been compared with the known
generating polygons of intersection-free minimal
surfaces. Then, for each remaining polygon, it had to be
checked, individually, whether or not the self-intersec-
tions of the spanning minimal surface form not only
straight but also curved lines. In some cases, this check
was complicated. It was made on the basis of geome-
trical inspection of the surface patch under considera-
tion and of its neighbouring ones. In this way, about 25
minimal surfaces with straight self-intersections have
been derived [most of them have been described earlier
(cf. Fischer & Koch, 1996a,b)]. No general rule could be
found which property of the polygon guarantees that the
generated in®nite surface does not intersect itself along
curved lines as well as straight lines.

For this reason, a new procedure has been applied:
the search has been con®ned to skew polygons (without
nodes), the edges of which run totally on the surface of a
convex asymmetric unit of one of the space groups listed
above. Each disc-like surface patch (i.e. each surface
patch with the topological properties of a disc) spanning
such a skew polygon lies completely inside this asym-
metric unit and, therefore, self-intersection of the
surface can only take place along the polygon edges, i.e.
no complicated individual proof is necessary in these
cases. For the space groups listed above, the different
convex asymmetric units have been inspected and, for
each of them, all skew polygons have been studied that
are formed by evenfold rotation axes on the surface of
the asymmetric unit. In this way, about 50 additional
three-periodic minimal surfaces with straight self-inter-
sections could be derived. It has to be stated, however,
that some of the surfaces known before cannot be found
in this way. Accordingly, the current list is most probably
not complete, in contrast to the corresponding situation
in the absence of self-intersections (Fischer & Koch,
1987; Koch & Fischer, 1988).

Due to the fact that spanning of a skew polygon by a
part of a minimal surface is guaranteed, irrespective of
the shape of the polygon, all these surfaces may be
deformed by permitted variation of the metrical par-
ameters. Each `surface', therefore, represents, strictly
speaking, a family of surfaces.

3. Properties

Visualizing a three-periodic minimal surface is often
more dif®cult and the construction of helpful models is
more laborious if it intersects itself than if it does not. It
turned out, however, that many of the properties of an
in®nite surface may be derived from its generating
polygon by abstract procedures.

3.1. Full symmetry group G of a minimal surface

Let P be a skew polygon formed by evenfold rotation
axes of some space group G1. This polygon may be disc-
like spanned by a patch of a minimal surface with
symmetry G. In most but not all cases, G and G1 will be
identical. G may be calculated as follows. The twofold
rotations around the edges of P generate a space group
G2 which either may be identical to G1 or may be a true
subgroup of G1, i.e. G2 � G1. In the latter case, the
polygon P is also formed by rotation axes of G2. If the
point-group symmetry of P, regarded by itself, is not
higher than 1, G2 describes the full symmetry of the
three-periodic surface, i.e. G2 � G. Otherwise, the
symmetry operations of the point group of P are addi-
tional generators of G, i.e. G is a true supergroup of G2:
G2 � G.

Example 1. G1 � I432; vertices of the generating
polygon: 000, 1

2 00, 1
2

1
4 0, 1

4
1
4

1
4,

1
4

1
2 0, 0 1

2 0; polygon edges:
2�x; 0; 0�, 2�12 ; y; 0�, 2�x; 1

4 ;
1
2ÿ x�, 2�14 ; y; 1

2ÿ y�, 2�x; 1
2 ; 0�,

2�0; y; 0�. The corresponding rotations generate the
group G2 � P4232, i.e. G2 � G1. The skew polygon is
symmetrical with respect to a diagonal mirror plane ..m,
i.e. m�x; x; z� is an additional generator of the full
symmetry group G � Pn�3m � P4232 of the minimal
surface.

3.2. Orientability

In®nite intersection-free minimal surfaces are neces-
sarily orientable, whereas minimal surfaces with self-
intersections very often turned out to be non-orientable.
Each orientable surface has two sides, which may be
coloured differently. On the contrary, a non-orientable
surface has, like a MoÈ bius strip, only one side. Each
three-periodic minimal surface with disc-like surface
patches contains closed rings of these patches. If the
surface is non-orientable, then there must exist such
rings which are twisted like a MoÈ bius strip.

In the case of a spanning minimal surface generated
by a skew polygon (cf. x2), each surface patch is related
to its neighbouring ones by twofold rotations. Therefore,
a closed ring consisting of an odd number of surface
patches is necessarily twisted and non-orientable, and
consequently must be part of a non-orientable surface.
A closed ring with an even number of surface patches,
however, may belong either to an orientable or to a non-
orientable surface. As a result, the occurrence of an odd-
membered ring of surface patches is a necessary and
suf®cient condition for the non-orientability of a three-
periodic surface.

The search for odd-membered rings may be
performed by looking for odd products of those twofold
rotations that map neighbouring surface patches onto
one another. The in®nite surface is non-orientable if
there exists such an odd-numbered product equal to
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identity. The number l of surface patches in the shortest
odd-membered ring may be used to characterize the
non-orientable spanning surface. In practice, the search
for odd-membered rings has been performed with the
aid of a small PC program which calculates the products
of twofold rotations.

3.3. Symmetry group S of an oriented surface

The symmetry of any orientable spanning minimal
surface may be described by a pair G±S of space groups,
regardless of whether or not the surface shows self-
intersections. The complete symmetry group G of the
surface consists of all symmetry operations mapping the
surface onto itself. S is a subgroup of G with index 2 and
describes the symmetry of the oriented surface, i.e. the
symmetry of the surface with both sides coloured
differently.

Each spanning minimal surface has twofold rotation
axes running within the surface. The respective twofold
rotations map the surface onto itself but interchange its
two sides and, therefore, belong to G but not to S.

In the case of a minimal surface generated by a skew
polygon, S is uniquely determined as that subgroup of G
with index 2 that contains none of the twofold rotation
axes forming the polygon edges. If, however, no such
subgroup of G exists for a given minimal surface, this is
another criterion for the non-orientability of that
surface.

Example 2. G � P6=mmm; vertices of the generating
polygon: 000, 100, 10 1

2,
2
3

1
3

1
2, 00 1

2; polygon edges: 2�x; 0; 0�,
2�1; 0; z�, 2�1ÿ x; x; 1

2�, 2�2x; x; 1
2�, 2�0; 0; z�. Among all

the subgroups of P6=mmm with index 2 there exists only
one, namely P63=mmc �c0 � 2c�, that contains none of
these twofold axes. The three-periodic minimal surface
generated by the given polygon, therefore, is an orien-
table one.

Example 3. G � P432; vertices of the generating
polygon: 000, 1

2
1
2 0, 1

2 00, 1
2

1
2

1
2, 0 1

2 0; polygon edges:
2�x; x; 0�, 2�12 ; y; 0�, 2�12 ; y; y�, 2�x; 1

2 ; x�, 2�0; y; 0�. P432
has three subgroups with index 2: P23, F432 �a0 � 2a�
with origin at Wyckoff position a of P432, and F432 (a0 �
2a) with origin at Wyckoff position b of P432. The axes
2�12 ; y; 0� and 2�0; y; 0� are preserved in P23. The ®rst
subgroup F432 keeps the axes 2�x; x; 0� and 2�0; y; 0�,
the second one 2�12 ; y; 0� and 2�12 ; y; y�. As a conse-
quence, the generated three-periodic minimal surface is
non-orientable.

3.4. Polygon edges with self-intersections

A minimal surface with straight self-intersections
normally does not intersect itself along all edges of its
generating polygon. In order to decide whether or not
self-intersection occurs along a certain polygon edge,
one has to calculate the number n of surface patches

sharing that edge. If n equals 2, there is no self-inter-
section. If n equals 4, 6, 8 or 12, then two, three, four or
six pieces of the surface, respectively, intersect each
other in the edge under consideration.

To calculate n, the length of the edge under consid-
eration (eventually together with other ones from the
same Wyckoff position) has to be divided by the length
of all rotation axes of the corresponding Wyckoff posi-
tion referred to one unit cell of G. The product of this
fraction and the number of surface patches per unit cell
results in n.

Example 4. G � P422; vertices of the generating
polygon: 000, 100, 10 1

2,
1
2

1
2

1
2,

1
2 0 1

2, 00 1
2. There exist eight

surface patches per unit cell of P422. Polygon edge 1:
2�x; 0; 0�; Wyckoff position 4l .2.; n1 � 1

2� 8 � 4; two
pieces of the surface intersect in edge 1. Polygon edges 2
and 6: 2�1; 0; z�, 2�0; 0; z�; 2g 4..; n2 � n6 � 1� 8 � 8;
four pieces of the surface intersect in edges 2 and 6.
Polygon edge 3: 2�1ÿ x; x; 1

2�; 4k ..2; n3 � 1
4� 8 � 2; no

self-intersection. Polygon edge 4: 2�12 ; y; 1
2�; 4m .2.;

n4 � 1
4� 8 � 2; no self-intersection. Polygon edge 5:

2�x; 0; 1
2�; 4n .2.; n5 � 1

4� 8 � 2; no self-intersection.

If an edge of a generating polygon is formed by a
fourfold or by a sixfold rotation axis of G, the generated
surface must intersect itself along this edge. In the case
of a fourfold rotation axis, two, four or even more pieces
of the in®nite surface intersect and the surface is
necessarily non-orientable. In the case of a sixfold
rotation axis, at least three pieces intersect. The corre-
sponding surface may be orientable or non-orientable,
examples having been found for both situations.

3.5. Flat points and branch points

For any point on a minimal surface, the de®ning
condition H � 1

2 �k1 � k2� � 0 is ful®lled, where H is the
mean curvature and k1 and k2 are the two main curva-
tures of the surface at that point. Normally, this means
k1 � ÿk2 6� 0. If, however, k1 � k2 � 0 at some point,
such a special point is called a `¯at point' of the surface.
It has the characteristic property as follows (cf. Hyde,
1989; Koch & Fischer, 1990).

Let n0 be the vector normal to the surface at a ¯at
point P0, and let P be a second point near P0 with
normal vector n. If P is moved on the surface once
around P0, n rotates r times �r > 1� around n0. The order
of the ¯at point � � rÿ 1 is a measure of the `degree of
¯atness' of the surface at the point P0. � may take any
positive integer value, but so far only values up to 4 have
been observed for three-periodic minimal surfaces.

A three-periodic minimal surface necessarily has ¯at
points, independently of the existence of self-intersec-
tions. In contrast, a `branch point' can occur only on a
self-intersecting surface. It is characterized as follows.

Let P0 be a branch point with normal vector n0 and P
a point in the neighbourhood of P0 with normal vector n.
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Then, in order to rotate n once around n0, P must be
moved around P0 more than once, say u times (cf. Fig.
1). The order of the branch point 
 � uÿ 1 may take
any positive integer value in principle, but so far only
branch points of order 1 have been observed on three-
periodic minimal surfaces.

For spanning minimal surfaces generated by skew
polygons, 
 � 1 is the only possible value. Such a branch
point results whenever a generating polygon has a
vertex angle of 120� (cf. Fig. 1). Then the surface inter-
sects itself along each of the twofold axes through the
120� vertex, but only on one side of the vertex, whereas
on its other side these axes are not contained in the
surface. Such a vertex has at least site symmetry 32.
Branch points of order 1 have been found on orientable
as well as on non-orientable three-periodic minimal
surfaces.

3.6. Spatial subunits

Any three-periodic minimal surface subdivides R3

into spatial subunits. In the case of a surface without
self-intersections, there always exist two in®nite three-
periodic subunits which interpenetrate each other, i.e.
the two labyrinths of the surface. These labyrinths are
necessarily congruent for a spanning minimal surface.

On the contrary, self-intersecting three-periodic
minimal surfaces give rise to a variety of spatial subunits,
which may differ in their periodicity and their connec-
tivity. The symmetry group U of such a subunit is always
a subgroup of the symmetry group G of the surface.
Generally, all spatial subunits are symmetrically
equivalent with respect to G and their subgroups Ui are
either identical or they are conjugate subgroups of G. In
the special case, however, that all edges of the gener-
ating polygon give rise to self-intersections of the
surface, two kinds of spatial subunits exist which are not
congruent and of which the symmetry groups are not
conjugate in G (cf. Fischer & Koch, 1996a). For minimal
surfaces derived with the aid of skew polygons, the
following kinds of subunits have been observed so far.

In most cases a self-intersecting surface subdivides R3

into two labyrinths which interpenetrate each other like
the labyrinths of an intersection-free surface [cf. the
non-orientable minimal surface described by Schoen
(1970)]; but in contrast to these, the labyrinths of a self-
intersecting surface may have `dead ends'. Furthermore,
a self-intersecting surface may also subdivide R3 into
four or eight congruent labyrinths. Whether or not other
numbers of labyrinths may also occur is not known at
present. The symmetry group U of a labyrinth is a space
group, and the index of U in G gives the (®nite) number
of labyrinths.

Some self-intersecting minimal surfaces subdivide R3

into (an in®nite number of) two-periodic spatial sub-
units, so-called `¯at labyrinths'. Mostly, all ¯at labyrinths
of a surface run parallel to one another, but there exist

also a few surfaces of which the ¯at labyrinths are
distributed among two sets. Then, all labyrinths of one
set are running parallel to one another, whereas two
labyrinths of different sets are perpendicular. In any
case, all ¯at labyrinths are congruent and the symmetry
group of a ¯at labyrinth is a layer group.

One-periodic spatial subunits, so-called `tubes', have
also been observed. Their symmetry groups are crys-
tallographic rod groups. All the tubes of a surface may
either run parallel to one another or they may be
distributed among sheets of parallel tubes with tubes of
neighbouring sheets pointing in different directions.
There exists also a minimal surface with two symme-
trically inequivalent kinds of tubes.

Spatial subunits without periodicity are ®nite ones
that may be regarded as `polyhedra' with curved faces
but straight edges. In all but one such case, the corre-
sponding minimal surface subdivides R3 into two kinds
of polyhedral subunits with different sizes and different
point-group symmetries U.

In addition, three minimal surfaces have been found
that subdivide R3 simultaneously into one-periodic
in®nite tubes and into ®nite polyhedra, e.g. the WI-10
surface (Fischer & Koch, 1996a).

As visualizing a spatial subunit without use of a model
may also be dif®cult, a procedure has been derived to
generate the symmetry group of a subunit. For this, each
edge of the generating polygon has to be assigned to one
of three types (I, II and III) de®ned as follows. A
polygon edge without self-intersection belongs to type I.
A polygon edge with self-intersection is shared by more
than two surface patches, but only two of them are
adjacent to the subunit under consideration. They are
not mapped onto each other by the twofold rotation
corresponding to that edge, but by another symmetry
operation of G. Accordingly, symmetrically equivalent

Fig. 1. Neighbourhood of a branch point with site symmetry 32.
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sides of the two patches may either be turned towards
the regarded spatial subunit (edge of type II) or not
(edge of type III).

If a surface patch has an edge of type II, this edge
plays a different role with respect to the spatial subunit
on one side of that patch or on its other side. In order to
take care of both symmetry situations, the patch has to
be replaced by a double patch, i.e. the union of two
neighbouring patches sharing an edge of type I.

A set of generators of the symmetry group U of a
spatial subunit is formed by: (a) the symmetry opera-
tions of the point group of the original surface patch; (b)
all products gigj of two twofold rotations gi and gj

around edges of type I of the regarded (double) patch;
(c) all symmetry operations mapping the regarded
double patch onto a neighbouring one if the shared edge
is of type II; (d) all ordered products higj of two
symmetry operations, where gj is a twofold rotation
around an edge of type I and hi maps the regarded
(double) patch onto a neighbouring one with a common
edge of type III.

Example 5. G � P422; vertices of the generating
polygon: 000, 1

2 00, 1
2 0 1

2,
1
2

1
2

1
2,

1
2

1
2 0. Four edges belong

to type I; the corresponding twofold rotations
are: g1 � 2 x; 0; 0; g2 � 2 1

2 ; 0; z; g3 � 2 1
2 ; y; 1

2;
g4 � 2 x; x; 0 [the conventions of International Tables
for Crystallography (1983) are used to designate
symmetry operations]. The ®fth edge runs along the
fourfold rotation axis in 1

2 ;
1
2 ; z and belongs to type III.

No double patches are needed. Generators of U are:
(a) 1 as site symmetry group of the surface patch;
(b) g1g2 � 2 1

2 ; y; 0
g1g3 � 2�0; 0;ÿ1� 1

2 ; 0; z
g1g4 � 4ÿ 0; 0; z
g2g3 � 2 x; 0; 1

2

g2g4 � 2�12 ;ÿ 1
2 ; 0� 1

2ÿ x; x; 0
g3g4 � 4��0; 0; 1� 1

2 ;
1
2 ; z;

(c) ±;
(d) h � 4ÿ 1

2 ;
1
2 ; z

hg1 � 2�ÿ 1
2 ;

1
2 ; 0� 1

2ÿ x; x; 0
hg2 � 4� 0; 0; z
hg3 � 2 x; x; 1

2

hg4 � 2 x; 1
2 ; 0

�) U � I422�a0 � aÿ b; b0 � a� b; c0 � 2c�:
As U is a subgroup of G with index 2, the generated
minimal surface subdivides R3 into two labyrinths with
symmetry I422.

Example 3 (cont.). Two edges belong to type I; the
corresponding twofold rotations are: g1 � 2 x; x; 0;
g2 � 2 1

2 ; y; 0. The edges along 1
2 ; y; y and x; 1

2 ; x belong
to type II. Neighbouring surface patches are mapped
onto another by 3ÿ x; x; x and 3� x; x; x, respectively.
The ®fth edge runs along the fourfold axis in 0; y; 0 and
belongs to type III. In this case, a double patch is
needed: 000, 1

2
1
2 0, 100, 1 1

2 0, 1
2

1
2ÿ 1

2,
1
2 00, 1

2
1
2

1
2, 0 1

2 0. It has

one additional edge for type I �g3 � 2 1ÿx; x; 0�, two
additional edges of type II (4� 1

2 ;
1
2 ; z and 4ÿ 1

2 ;
1
2 ; z)

and one additional edge of type III along the fourfold
axis in 1; y; 0. Generators of U are:

(a) 1 as site symmetry group of the surface patch;
(b) g1g2 � g2g3 � 4ÿ 1

2 ;
1
2 ; z

g1g3 � 2 1
2 ;

1
2 ; z;

(c) 3� x; x; x; 3ÿ x; x; x
4� 1

2 ;
1
2 ; z; 4ÿ 1

2 ;
1
2 ; z;

(d) h1 � 4� 0; y; 0; h2 � 4ÿ 1; y; 0
h1g1 � 3� ÿ x;ÿx; x
h1g2 � 4ÿ 1

2 ; y;ÿ 1
2

h1g3 � 3� 1
2� x; 1

2ÿ x;ÿ 1
2ÿ x

h2g1 � 3� 1
2� x; 1

2� x;ÿ 1
2� x

h2g2 � 4� 1
2 ; y;ÿ 1

2

h2g3 � 3� 1
2ÿ x; 1

2� x;ÿ 1
2ÿ x

�) U � 432 at 1
2

1
2ÿ 1

2 :

The generated group U is a point group with ®xed
point at 1

2
1
2ÿ 1

2. As a consequence, the minimal surface
subdivides R3 into ®nite spatial subunits with centres at
Wyckoff positions 1�b� of space group P432.

3.7. The Euler characteristic � of a minimal surface

Topologically, a non-periodic surface in R3 may be
characterized by three integers �"; �; ��: " is the
orientability character with the value �1 for an orien-
table and ÿ1 for a non-orientable surface, � is the
number of boundary curves and � the `Euler char-
acteristic'. � can be derived from any polygon tiling of
the surface by

� � f ÿ e� v; �1�
where f is the number of faces (tiles), e the number of
edges and v the number of vertices in the tiling. For any
periodic surface, the so-de®ned Euler characteristic
becomes necessarily in®nite and, therefore, � is usually
referred to one primitive unit cell of such a surface.

In the case of a three-periodic minimal surface
generated by a disc-like spanned skew polygon, this
polygon yields a tiling on the surface which may be used
for the calculation of �. Regardless of whether or not the
surface is self-intersecting, � is referred to one primitive
unit cell of the (eventually oriented) surface. Then f
equals the number of skew polygons per unit cell. If the
surface intersects itself along a certain edge or in a
certain vertex, that edge or that vertex has to be counted
more than once in the polygon tiling. Therefore, e and v
may be calculated as follows:

e � 1
2 mf �2�

v � f
Pm
i�1

qi: �3�

Here m is the number of vertices of the generating
polygon and qi depends on the edge angle �i at the ith
vertex, i.e. on the number of polygons sharing that
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vertex (referred to one piece of the surface in the case of
self-intersection): �i � 30� ) qi � 1

12, �i � 45� )
qi � 1

8, �i � 60� ) qi � 1
6, �i � 90� ) qi � 1

4, i.e.
qi � 360�=�i for these cases. Each 120� vertex, however,
corresponds to a branch point and, therefore, six poly-
gons meet at such a vertex: �i � 120� ) qi � 1

6.
Equation (4) presents a different possibility for the

calculation of �. It is based on the general Gauss±
Bonnet formula (cf. e.g. Dierkes et al., 1992, Vol. I):

� � f ÿ f=�2��Pm
i�1

�i ÿ b: �4�

Again the summation runs over the m vertices of the
generating polygon; �i � �ÿ �i is the exterior edge
angle at the ith vertex and b is the number of branch
points of the surface per unit cell.

For any three-periodic minimal surface, the Euler
characteristic � is necessarily negative. The larger its
absolute value j�j, the more complicated in the topo-
logical sense is that part of the surface that corresponds
to one unit cell.

Example 6. G � P422; vertices of the generating
polygon: 000, 1

2 00, 1
2 0 1

2, 10 1
2,

1
2

1
2

1
2, 00 1

2; polygon edges:
2�x; 0; 0�, 2�12 ; 0; z�, 2�x; 0; 1

2�, 2�1ÿ x; x; 1
2�, 2�x; x; 1

2�,
2�0; 0; z�. The surface is non-orientable and has
no branch points: f � 8, e � 1

2� 6� 8 � 24,
v � 8�14� 1

4� 1
4� 1

8� 1
4� 1

4� � 11. Equation (1) gives
� � 8ÿ 24� 11 � ÿ5. Equation (4) gives
� � 8ÿ 8��=2� �=2� �=2� 3�=4� �=2� �=2�=�2��
� ÿ5.

Example 7. G � P622; vertices of the generating
polygon: 000, 1

2 00, 1
2 0 1

2, 10 1
2,

2
3

1
3

1
2, 00 1

2; polygon edges:
2�2x; 0; 0�, 2�12 ; 0; z�, 2�x; 0; 1

2�, 2�1ÿ x; x; 1
2�, 2�2x; x; 1

2�,
2�0; 0; z�. The surface is non-orientable and has two
branch points per unit cell at 2

3
1
3

1
2 and 1

3
2
3

1
2: f � 12,

e � 1
2� 6� 12 � 36, v � 12�14� 1

4� 1
12� 1

6� 1
4� 1

4� � 15,
b � 2. Equation (1) gives � � 12ÿ 36� 15 � ÿ9.
Equation (4) gives � � 12ÿ 12��=2� �=2� 5�=6 �
�=3� �=2� �=2�=�2�� ÿ 2 � ÿ9.

3.8. The Euler characteristic �s of a spatial subunit

One may also calculate the Euler characteristic �s of
the surface of a certain labyrinth or of another spatial
subunit:

�s � fs ÿ es � vs: �5�
In the case of a ®nite subunit, fs, es and vs are the
numbers of faces, edges and vertices of that polyhedron,
respectively. In the case of a labyrinth, a ¯at labyrinth or
a tube, fs, es and vs are referred to one unit cell of the
corresponding space group, layer group or rod group,
respectively, i.e. fs is the number of polygons per unit cell
which form the boundary of the spatial subunit, and es

and vs may be calculated as

es � 1
2 mfs �6�

and

vs � fs

Pm
i�1

1=psi: �7�

Here, psi is the number of polygons sharing the ith vertex
of the generating polygon and forming the boundary of
the spatial subunit. In contrast to the calculation of � for
the minimal surface, psi cannot be inferred directly from
the edge angle �i at the ith vertex, because here the edge
angles of different polygons sharing the same vertex
may differ. Therefore, psi must be determined indivi-
dually for each vertex of the generating polygon by
geometrical inspection.

Additional dif®culties occur if there exists a polygon
edge of type II: Depending on what side of the surface
patch is considered, the numbers of polygons sharing the
ith vertex may be different, e.g. psi1 and psi2. If there exist
two different kinds of spatial subunits with Euler char-
acteristics �s1 and �s2, the values psi1 and psi2 must be
used for the calculation of �s1 and �s2, respectively. If,
however, all subunits are congruent, then each of the
values psi1 and psi2 refer to one half of the tiles forming
the boundary of a spatial subunit, and equation (7) must
be replaced by:

vs � fs=2
Pm
i�1

�1=psi1 � 1=psi2�: �8�

Polyhedral spatial subunits without handles have the
same Euler characteristic as a sphere, namely �s � 2;
unbranched tubes have �s � 0. The �s values for all
other spatial subunits are smaller: for branched poly-
hedra, �s � 0; for branched tubes, �s � ÿ2; for ¯at
labyrinths, �s � ÿ2; for three-periodic labyrinths,
�s � ÿ4.

For three-periodic minimal surfaces without self-
intersection, � � �s holds. In general, this is not true for
self-intersecting three-periodic minimal surfaces.

There exists a second possibility for the determination
of �s, namely with the aid of the `labyrinth graph'
corresponding to each spatial subunit. Such a labyrinth
graph has the following properties (cf. Fischer & Koch,
1989c): (i) each graph is entirely located within its spatial
subunit; (ii) each branch of a (¯at) labyrinth or of a
branched tube or branched polyhedron contains an edge
of its labyrinth graph; (iii) each circuit of one labyrinth
graph encircles at least one edge of another graph.

As the surface of a spatial subunit is necessarily an
orientable surface, its Euler characteristic �s and its
genus gs are linked according to the following equation:

�s � 2ÿ 2gs; �9�
where gs is referred to the same unit cell as �s. It may be
calculated with the aid of a ®nite connected subgraph of
the regarded labyrinth graph containing no transla-
tionally equivalent vertices:
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gs � 1
2 s� t: �10�

Here s is the number of edges connecting the subgraph
to the rest of the in®nite labyrinth graph and t is the
number of edges that must be omitted to make the
subgraph simply connected.

The combination of equations (9) and (10) yields:

�s � 2ÿ sÿ 2t: �11�

Example 6 (cont.). Self-intersection of the surface takes
place along edges 4, 5 and 6; edges 4 and 5 belong to type
II. The spatial subunits are congruent tubes parallel to c
with symmetry U � P4�22��c0 � c� and the axis at 1

2
1
2 z.

There exists only one tube around each axis. As each
surface patch contributes two sides to the surfaces of the
spatial subunits, fs � 2f � 16 holds. Equation (6) gives
es � 1

2� 6� 16 � 48. Geometrical inspection of the
generating polygon shows that, except for vertex 5, each
vertex is shared by four surface patches belonging to the
same spatial subunit. Vertex 5, however, is common to
two or four surface patches depending on the polygon
side under consideration. Equation (8) gives
vs � 16=2�6� 1

4� 5� 1
4� 1

2� � 26. Equation (5) gives
�s � 16ÿ 48� 26 � ÿ6. The labyrinth graph has only
one vertex per unit cell of P4�22�. It is connected via four
edges to each of its two neighbouring vertices in the unit
cells above and below: s � 8, t � 0. Equation (10) gives
gs � 8=2� 0 � 4. Equation (11) gives �s � 2ÿ 8ÿ 0 �
ÿ6.

Example 7 (cont.). Self-intersection of the surface takes
place along edges 4, 5 and 6; edges 4 and 5 belong to type
II. The spatial subunits are congruent tubes parallel to c
with symmetry U � P3�12��c0 � c� and the axis at 2

3
1
3 z.

There exists only one tube around each axis, but two
tubes per unit cell of G: fs � f � 12. Equation (6) gives
es � 1

2� 6� 12 � 36. With the exception of vertex 5,
each vertex is shared by four surface patches belonging
to the same spatial subunit. Vertex 5, however, is
common to two or to three surface patches depending
on the polygon side under consideration. Equation (8)
gives vs � �12=2��6� 1

4� 4� 1
4� 1

2� 1
3� � 20. Equation

(5) gives �s � 12ÿ 36� 20 � ÿ4. The labyrinth graph
has only one vertex per unit cell of P3(12). It is
connected via three edges to each of its two neigh-
bouring vertices in the unit cells above and below: s � 6,
t � 0. Equation (10) gives gs � 6=2� 0 � 3. Equation
(11) gives �s � 2ÿ 6ÿ 0 � ÿ4.

The authors thank Professor Dr J. C. C. Nitsche
(Minneapolis), Professor Dr S. Hildebrandt and Dr K.
Grosse-Brauckman (Bonn) for helpful remarks on the

problem of how branch points in¯uence the calculation
of the Euler characteristic.
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